
Guide for installing Litmus-RT on a Raspberry PI 3

Mercea Otniel Bogdan

Politehnica University of Timisoara

Prerequisites:

- Necessary hardware: a microSD card (min. 8 GB)

- microSD card reader

- A Linux host set up of kernel build

- Good knowledge of linux kernel compiling

- Raspberry PI3 ArchLinux credentials:

o User: alarm -> password: alarm

o User: root -> password: root

1. Install ArchLinux on Raspberry PI 3

a) Install the Linaro Toolchain

• Get the latest Linaro Toolchain for ARM64 (AARCH64) architecture running on a x86_64 host.

The latest version can be found at:

https://releases.linaro.org/components/toolchain/binaries/latest/aarch64-linux-gnu/

wget https://releases.linaro.org/components/toolchain/binaries/latest/aarch64-linux-

gnu/gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu.tar.xz

• Extract the archive

tar xvvJf gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu.tar.xz

• Make sure the toolchain is added to your PATH environment variable. An example can be found

below (assuming the toolchain was extracted in the home directory). It is recommanded to add

this line to your .bashrc file in your home directory

export PATH=$PATH:$/home/user/gcc-linaro-7.2.1-2017.11-x86_64_aarch64-linux-gnu/bin

b) Install arch linux on Raspberry PI 3:

a) Create partition table

fdisk /dev/sdX

At the fdisk prompt,delete old partitions and create a new one:

• Type o. This will clear out any partitions on the drive.

• Type p to list partitions. There should be no partitions left.

• Type n, then p for primary, 1 for the first partition on the drive, press ENTER to accept the

default first sector,

https://releases.linaro.org/components/toolchain/binaries/latest/aarch64-linux-gnu/

• then type +100M for the last sector.

• Type t, then c to set the first partition to type W95 FAT32 (LBA).

• Type n, then p for primary, 2 for the second partition on the drive, and then press ENTER twice

to accept the default first and last sector.

• Write the partition table and exit by typing w.

• After the partition table has been written, exit fdisk and issue a sync command

The resulted partition table should look similar to this:

Disk /dev/sdd: 29.7 GiB, 31914983424 bytes, 62333952 sectors

Units: sectors of 1 * 512 = 512 bytes

Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xab9c8d91

Device Boot Start End Sectors Size Id Type

/dev/sdd1 2048 206847 204800 100M c W95 FAT32 (LBA)

/dev/sdd2 206848 62333951 62127104 29.6G 83 Linux

b) Create the filesystems

• Create the filesystem for the boot partition

mkfs.vfat /dev/sdX1

• Create the filesystem for the root partition

mkfs.ext4 /dev/sdX2

• Issue a sync command to make sure the changes have been written to the microSD card

sync

• Check for write errors in kernel messages log (dmesg). If any write errors are present for your

sdX driver, change to a new microSD card and repeat the process

c) Mount the filesystems on the microSD card

• Create a mount point. This example will use a mount point in the home directory:

mkdir sdmount

mkdir sdmount/boot

mkdir sdmount/root

• Mount the filesystems

mount /dev/sdX1 ~/sdmount/boot

mount /dev/sdX1 ~/sdmount/root

• Verify that the partition have been mounted properly and insure that they were mounted in

read/write mode. If not, change to a new microSD card and repeat the process

d) Download and extract the root filesystem

wget http://os.archlinuxarm.org/os/ArchLinuxARM-rpi-3-latest.tar.gz

tar -xpf ArchLinuxARM-rpi-3-latest.tar.gz -C /~/sdmount/root

sync

e) Move boot files to the first partition:

mv ~/sdmount/root/boot/* ~/sdmount/boot

f) Unmount the two partitions:

unmount ~/sdmount/root

unmount ~/sdmount/boot

sync

g) Check for any errors regarding your microSD card in kernel message log (dmesg)

h) Test your new ArchLinux installation on a Raspberry PI3. (insert the microSD card and power

on your Raspberry PI 3). The ArchLinux system should boot.

• In some cases a new generation of the modules.dep and map files may be required (if for

example networking does not start…). In this case execute the depmod command on your RPI3

system with rool privileges and reboot

[root@alarm ~]# depmod

[root@alarm ~]# reboot

i) Upgrade your system to the latest version and reboot

[root@alarm ~]# pacman -Su

2. Compile and Install the Linux Kernel with the LITMUS^RT patch. This tutorial will use the

LITMUS^RT extensions on top of the Linux Kernel version 4.9.30

a) Get the Linux Kernel:

git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

cd linux-stable

git checkout v4.9.30

b) Apply the LITMUS^RT patch

git remote add litmus https://github.com/LITMUS-RT/litmus-rt.git

git fetch litmus

git remote -v

git cherry-pick v4.9.30..litmus/linux-4.9-litmus

c) Copy the .config file in the linux-stable folder (the root of the the kernel) from the

Raspberry PI 3. A default .config file is present in the archive

• In order to extract the .config from the newly running system of the RPI3 ArchLinux system,

copy the /proc/config.gz file from RPI to your Linux system (maybe via scp) used to compile the

kernel. Obtain the .config file by extracting it to the linux-stable directory. Example:

zcat config.gz > ~/linux-stable/.config

• Insure that CONFIG_MODULES=y.

cat ~/linux-stable/.config | grep “CONFIG_MODULES”

d) Configure the kernel using menuconfig – in the linux-stable directory

cd ~/linux-stable

make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- menuconfig

• To configure the kernel, the following steps are necessary:

I. Add a recognizable local version, such as –litmus (or whatever you want). It is used to

show that you are running the compiled kernel. This will be necessary after we have the

running kernel on the board in order to insure what kernel is currently running. This can

be entered under General setup->Local version - append to kernel release.

II. Enable in-kernel preemptions. This can be set under Kernel features->Preemption

model. Choose Preemptible Kernel (Low-Latency Desktop).

III. Disable group scheduling. First, disable the Automatic process group scheduling option

under General setup. Second, under General setup->Control group support->CPU

controller, disable Group scheduling for SCHED_OTHER

IV. Disable frequency scaling and power management options that affect timer frequency.

Under General setup->Timers subsystem->Timer tick handling, set the option to

constant rate, no dynticks. Under Power management options, make sure that

Suspend to RAM and standby, Hibernation and Opportunistic sleep are disabled.

Under CPU Power Management->CPU Frequency scaling, disable CPU Frequency

scaling.

V. When planning to do development, enable tracing in LITMUS^RT. Under LITMUS^RT-

>Tracing, enable TRACE() debugging. Note that this is a high-overhead debug tracing

interface that must not be enabled for any benchmarks or production use of the system

e) Compile the kernel. The –j parameter instructs the make system how many CPUs to use

for compiling the kernel. Adjust this parameter according to your host Linux system’s

hardware capabilities

make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- -j 4

f) Insert the microSD card into the Linux host system and mount the filesystems according

to step 1.c)

mount /dev/sdX1 ~/sdmount/boot

mount /dev/sdX1 ~/sdmount/root

g) After compilation copy Image and bcm2837-rpi-3-b.dtb from the linux folder to the

mounted SD card

cp ~/linux-stable/arch/arm64/boot/dts/broadcom/bcm2837-rpi-3-b.dtb

~/sdmount/boot/dtbs/broadcom

h) Copy the newly compiles linux image

cp ~/linux-stable/arch/arm64/boot/Image ~/sdmount/boot/

i) Install kernel modules:

make ARCH=arm64 CROSS_COMPILE=aarch64-linux-gnu- INSTALL_MOD_PATH=~mak/sdmount/root

modules_install

j) Invoke a force sync and unmount the filesystems

sync

unmount ~/sdmount/boot

unmount ~/sdmount/root

k) Boot the new kernel. After login check if the kernel version matches along with the local

version suffix entered in step 2.d)

NOTE: There are some situations where after these steps the system does not start. The systems boots

the kernel but it reports that it cannot mount the root partition of the sdcard. If this situation occurs, the

only solution is to start this guide all over again.

l) After boot, on your RPI3 system, using root privileges, run depmod Invoke a force sync

and after reboot.

